segunda-feira, 4 de abril de 2011

Energia potencial nuclear




Convém abrir-se esta seção com algumas considerações importantes apresentadas por Robert Eisberg em um famoso livro didático de sua autoria :
" Apesar de dispormos atualmente de um conjunto bastante completo sobre as forças nucleares, contata-se que elas são demasiadamente complicadas, não sendo possível até agora usar este conhecimento para produzir uma teoria ampla dos núcleos. Em outras palavras, nós não podemos explicar todas as propriedades dos núcleos em função das propriedades das forças nucleares que atuam sobre seus prótons e nêutrons. Existem entretanto diversos modelos ... Cada um deles pode explicar um certo número limitado de propriedade nucleares ..." Ainda encontra-se no mesmo livro: " Uma diferença profunda entre o estudo experimental dos núcleos e dos átomos decorre da diferença entre suas energias características. A energia característica dos núcleos é da ordem de 1 Mev ... Veremos um pouco mais à frente que esta mesma ordem de grandeza caracteriza a energia de ligação de um próton ou nêutron em um núcleo típico assim como a energia de separação entre seu estado fundamental e o primeiro estado excitado. A energia característica dos átomos é da ordem de 1 eV." , mil vezes menor, portanto.
 
Urânio enriquecido. Em processos que levam à fissão dos núcleos deste material uma porção da energia potencial nuclear é convertida em energia térmica, entre outras. A energia liberada pela fissão de um único átomo deste elemento é ordens de grandeza maior do que a energia que seria por este liberada caso este átomo participasse de qualquer reação químicas concebível.
Ressalvas acima consideradas, define-se energia nuclear como a energia potencial associada à posição relativa dos nucleôns  um em relação aos outros em virtude da interação nuclear forte que os mantém unidos no núcleo atômico, definição razoável ao se considerar os modelos para os núcleos propostos, a citar: o modelo nuclear da gota líquida, o modelo do gás de fermi, o modelo de camadas, o modelo coletivo, e outros.
A força nuclear forte, ao contrário da elétrica e da gravitacional, apesar de atrativa é uma força de curto alcance: possui um valor extremamente alto se comparado à elétrica quando dois nucleôns estão a uma distância curta e decai rapidamente a zero se estes se afastam além de uma certa distância limite. "ela atua de maneira apreciável somente em uma distância inferior a 10F" (1F = 1fermi = 10-15m, aproximadamente o raio de um próton ou nêutron). Considerando-se o sistema com os nucleôns "infinitamente" separados como referencia para a medida da energia potencial nuclear (zero neste caso), isto traduz-se em uma energia potencial negativa muito elevada para o núcleo formado. A energia potencial nuclear negativa confina os prótons e nêutrons no interior do núcleo mesmo sob a intensa repulsão elétrica experimentada pelos prótons devido à sua proximidade pois, neste âmbito, a energia potencial nuclear é, em módulo, muito superior à energia potencial elétrica - positiva - associada aos nucleôns carregados. A energia potencial elétrica liberada caso um próton venha a escapar do núcleo sob a ação da força elétrica não é capaz de compensar o aumento na energia potencial nuclear associado a esta fuga, isto em situações comuns, pelo menos . "Experiências recentes envolvendo espalhamento de prótons por prótons mostra que o alcance das forças nucleares é da ordem de 2F e que o valor de energia associada à força atrativa é aproximadamente 10 vezes maior do que a energia coloumbiana quando os dois prótons se encontram separados por esta distância".
Variações nas energias potenciais nucleares ocorrem quando o núcleo participa de uma reação nuclear. As energias liberadas neste processo são ordens de grandeza maiores do que as liberadas a partir de variações nas energias químicas associadas à eletrosfera deste átomo quando este participa de uma reação química.

Energia potencial elástica



A energia potencial elástica está associada a uma mola ou a um corpo deformado desde que em regime elástico e não plástico. Em detalhes, em termos de estrutura da matéria, a energia potencial elástica relaciona-se diretamente às energias potenciais elétrica existente entre as partículas que compõem o corpo, possuindo ambas, em essência, a mesma natureza.
É calculada pela expressão (mola ideal):
E_{p. elastica} = \frac{k.x^2}{2} ,
onde:
K = a constante elástica da mola, a mesma dada estabelecida pela lei de Hooke (em newtons por metro).
X = a elongação, a variação no tamanho da mola (em metros).
Esta expressão assume a configuração de energia potencial nula a configuração para a mola solta, em seu tamanho natural. Como a elongação aparece quadrada, tanto faz esticar como comprimir a mola, a energia associada será sempre positiva. As variações nesta energia podem perfeitamente ser negativas, entretanto.

Energia Nuclear

Energia nuclear é a energia liberada numa reação nuclear, ou seja, em processos de transformação de núcleos atômicos. Alguns isótopos de certos elementos apresentam a capacidade de se transformar em outros isótopos ou elementos através de reações nucleares, emitindo energia durante esse processo. Baseia-se no princípio da equivalência de energia e massa (observado por Albert Einstein), segundo a qual durante reações nucleares ocorre transformação de massa em energia. Foi descoberta por Hahn, Straßmann e Meitner com a observação de uma fissão nuclear depois da irradiação de urânio com nêutrons.
A tecnologia nuclear tem a finalidade de aproveitar a energia nuclear, convertendo o calor emitido na reação em energia elétrica. Isso pode acontecer controladamente em reator nuclear ou descontroladamente em bomba atômica. Em outras aplicações aproveita-se da radiação ionizante emitida.

Energia potencial elétrica



Para interações entre partículas puntuais a energia potencial elétrica é a energia associada a uma partícula qualquer com carga elétrica "q" situada a uma distância "d" de uma outra partícula com carga "Q". É calculada pela expressão:
E_{p.eletrica} = \frac{k.q.Q}{d}
Nesta expressão a configuração para a energia potencial nula é aquela onde as cargas encontram-se infinitamente distantes umas das outras. Se as cargas têm mesmo sinal e se repelem, o sistema por elas formado quando encontram-se separadas por uma distância r não infinita tem energia potencial positiva. No caso em que as cargas têm sinais contrários há uma atração entre as mesmas, e na formação do sistema a partir das mesmas no infinito deve-se remover energia do sistema no processo a fim de ter-se as cargas estáticas; a energia potencial do sistema formado será negativa.
Tem-se da teoria do eletromagnetismo que o potencial elétrico V de um ponto situado a uma distância d de uma carga Q é dado por:
V = \frac{k.Q}{d} [13],
donde:
Ep.eletrica = q.V
A última expressão tem em verdade validade geral, não sendo exclusiva para casos envolvendo duas cargas puntuais. É muito útil em análise de circuitos, e o potencial de referência (zero volt) não precisa estar no infinito, podendo neste caso ser um ponto de referência escolhido livremente dentro do circuito. O cálculo do potencial do ponto entretanto não é mais dado pela expressão que a antecede visto que não há claramente neste caso apenas uma carga puntual responsável pelo potencial no referido ponto.
Tem-se respectivamente, nas expressões:
k= constante eletrostática do meio em que as cargas estiverem inseridas.
V= potencial elétrico do ponto onde coloca-se a carga q devido à presença da carga Q ou de qualquer outro sistema de cargas.

q= carga da partícula à qual "associa-se" a energia potencial elétrica, também chamada carga de prova.
d= distância entre a carga q (puntual) e a carga fonte Q (também puntual).
Q= carga fonte Q (puntual).

Energia cinética



Em física, a variação de energia cinética é a quantidade de trabalho que teve que ser realizado sobre um objeto para modificar a sua velocidade (seja a partir do repouso - velocidade zero - seja a partir de uma velocidade inicial).
Para um objeto de massa m a uma velocidade v a sua energia cinética, em um instante de tempo, é calculada como:
E_c = \frac{mv^2}{2}

Discussão conceitual

Uma das coisas importantes a se lembrar desta expressão é que a energia cinética aumenta com o quadrado da velocidade. Isto significa que um carro que bater a 160 km/h causará 4 vezes mais estrago que um andando a 80 km/h, ou 16 vezes mais que um a 40 km/h, ou 64 vezes mais que um a 20 km/h
Também da definição da energia cinética como a soma "integral" do trabalho realizado em um determinado deslocamento do corpo podemos entender porque uma colisão de veículos causa tanto estrago.
Um veículo andando a 80 km/h por exemplo chegou a esta velocidade devido ao trabalho do motor durante um certo tempo e distância. Ao colidir, toda a energia cinética do veículo deve ser dissipada para que ele volte ao repouso. Na colisão com um poste, por exemplo, a distância que o veículo terá para realizar um trabalho equivalente ao que foi feito para coloca-lo em movimento é significativamente muito menor, alguns centímetros, talvez um metro. Desta forma, as forças envolvidas terão que ser muito maiores, para que o produto Força x deslocamento (trabalho) seja igual ao do percurso original.
A energia cinética é a energia que o sistema possui em virtude do movimento das partículas que constituem o sistema, em relação ao referencial adotado.Ela depende de sua massa e do módulo de sua velocidade ao quadrado;não depende da direção de sua velocidade porque a energia cinética é uma grandeza escalar. Assim, podemos generalizar dizendo que é a energia que temos quando um determinado corpo está em movimento.
Um outro importante conceito de energia cinética, é quando nos referimos ao trabalho. Consideremos um caminhão que têm a mesma velocidade do carro, mas possui maior massa, maior também será o trabalho realizado, ou seja , maior a energia cinética.
"O trabalho realizado pela força resultante "F" que desloca um corpo de uma posição para outra, é igual à variação de energia cinética", ou seja, \tau = \frac{1}{2}. mv^2 - \frac{1}{2}.mv_{o}^2.

Dedução da energia cinética

Da definição de energia cinética como trabalho para colocar um corpo em movimento, podemos obter a expressão geral dada acima para o cálculo da energia cinética:
\Delta E_{c} = W = \int\mathbf{F}\cdot d\mathbf{s}
Como o deslocamento em instante infinitesimal de tempo é \mathbf{s} = \mathbf{v} dt, obtemos:
\Delta E_{c} =  \int_{0}^{v} \mathbf{F}\cdot d\mathbf{s} =\int_{0}^{v} \mathbf{F}\cdot \mathbf{v} dt = \int_{0}^{v} m \frac{d\mathbf{v}}{dt} \cdot \mathbf{v} dt
Cancelando o dt na expressão acima podemos escrever (para uma massa constante):
\Delta E_{c} = \int_{0}^{v} m d\mathbf{v} \cdot \mathbf{v} = \frac{1}{2} m \mathbf{v} \cdot \mathbf{v} = \frac{mv^2}{2}</

Exemplo Ec= 50 . 5² /2 = 625. Ou seja energia cinética de uma pessoa de 50 kg à 5 m/s é de 625 J.

Energia Maremotriz

A energia dos mares é a energia que se obtém a partir do movimento das ondas, a das marés ou da diferença de temperatura entre os níveis da água do mar. Ocorre devido à força gravitacional entre a Lua, a Terra e o Sol, que causam as marés, ou seja, a diferença de altura média dos mares de acordo com a posição relativa entre estes três astros. Esta diferença de altura pode ser explorada em locais estratégicos como os golfos, baías e estuários que utilizam turbinas hidráulicas na circulação natural da água, junto com os mecanismos de canalização e de depósito, para avançar sobre um eixo. Através da sua ligação a um alternador, o sistema pode ser usado para a geração de eletricidade, transformando, assim, a energia das marés, em energia elétrica, uma energia mais útil e aproveitável.
A energia das marés têm a qualidade de ser renovável, como fonte de energia primária não está esgotada pela sua exploração e, é limpa, uma vez que, na transformação de energia não produz poluentes derivados na fase operacional. No entanto, a relação entre a quantidade de energia que pode ser obtida com os actuais meios económicos e os custos e o impacto ambiental da instalação de dispositivos para o seu processo impediram uma notável proliferação deste tipo de energia.
Outras formas de extrair energia a partir da energia das ondas oceânicas são, a energia produzida pelo movimento das ondas do oceano e de energia devido ao gradiente térmico, que faz uma diferença de temperatura entre as águas superficiais e profundas do oceano.

Energia Solar

A energia solar é aquela energia obtida pela luz do Sol, pode ser captada com paineis solares. É uma fonte de vida e de origem da maioria das outras formas de energia na Terra. A cada ano a radiação solar trazida para a terra leva energia equivalente a vários milhares de vezes a quantidade de energia consumida pela humanidade. Escolhendo uma boa radiação solar, esta pode ser transformada em outras formas de energia como calor ou eletricidade usando painéis solares.
Através de colectores solares, a energia solar pode ser transformada em energia térmica, e usando painéis fotovoltaicos a energia luminosa pode ser convertida em energia eléctrica. Ambos os processos não têm nada a ver uns com os outros em termos de sua tecnologia. Mesmo assim, as centrais térmicas solares utilizam energia solar térmica a partir de colectores solares para gerar eletricidade.
Há dois componentes na radiação solar: radiação directa e radiação difusa. A radiação directa é a que vem diretamente do sol, sem reflexões ou refrações intermediárias. A difusa, é emitida pelo céu durante o dia, graças aos muitos fenómenos de reflexão e refração da atmosfera solar, nas nuvens, e os restantes elementos do atmosférico e terrestre. A radiação refletida direta pode ser concentrada e de utilização, embora não seja possível concentrar dispersa a luz que vem de todas as direções. No entanto, tanto a radiação direta quanto a radiação difusa são utilizáveis.
É possível diferenciar entre receptores ativos e passivos na qual os primeiros utilizam mecanismos para orientar o sistema receptor rumo ao sol (chamado seguidor) para melhor atrair a radiação directa.
Uma grande vantagem da energia solar é que ela permite a geração de energia, no mesmo local de consumo, através da integração da arquitetura. Assim, poderemos levar a sistemas de geração distribuída, em que quase eliminar completamente as perdas ligadas aos transportes, que representam actualmente cerca de 40% do total, e a dependência energética. Porém essa fonte de energia tem o inconveniente de não poder ser usada anoite, a menos que tenhamos baterias suficientes para tanto.